
Testing Times
On Model-Based

Functional Testing for
Real-Time Embedded Systems

Ed Brinksma
University of Twente, NL
University of Aalborg,DK

December 1st, 2004 Software Testing: Trends & Visions 2

Theme

How can theory help to improve
the quality and productivity

of testing conformance of real-life
embedded software systems?

December 1st, 2004 Software Testing: Trends & Visions 3

Overview
Model-based testing

model-driven test generation
implementation relations
input/output systems, quiescence

Test generation & execution
TorX
Demo
Case studies

Current and future developments
Testing real-time systems
Testing and tolerance
Test data generation

December 1st, 2004 Software Testing: Trends & Visions 4

Overview
Model-based testing

model-driven test generation
implementation relations
input/output systems, quiescence

Test generation & execution
TorX
Demo
Case studies

Current and future developments
Testing real-time systems
Testing and tolerance
Test data generation

December 1st, 2004 Software Testing: Trends & Visions 5

Test Automation

Traditional test automation
= tools to execute and manage test cases

specification

test
tool

implementation
under test

pass

fail

TTCNTTCNtest
cases

Why not generate
tests automatically?!

December 1st, 2004 Software Testing: Trends & Visions 6

Our Context

Formal methods:
unambiguous specification (“model-driven”)
precise notion of correctness
formal validation of tests
algorithmic generation of tests

Dynamic behaviour:
concentrate on control behaviour
concurrency and non-determinism

Models are hard to
make, but easier

to maintain

December 1st, 2004 Software Testing: Trends & Visions 7

Conformance Testing

unit

integration

system

performance
robustness

functional
behaviour

white box black box

Level of detail

Accessibility

Characteristics

usability

reliability

module

security

Reasons:
• sources

inaccessible
• sources

unavailable
• simpler

models

December 1st, 2004 Software Testing: Trends & Visions 8

test
execution

pass / fail

Formal Testing

test
generation

test suite TS

specification
S

implementation
i

correctness
criterion

implementation
relation
imp

i passes Ts

i imps

⇔⇑ ⇓ soundexhaustive

December 1st, 2004 Software Testing: Trends & Visions 9

Implementation Relation

environment
e

environment
e

For all environments e
all observations of an implementation i in e

should be explained by
observations of the specification s in e.

implementation
i

specification
simp

IDEA:

Observations = Action Logs (= traces)

including deadlocks

December 1st, 2004 Software Testing: Trends & Visions 10

The Quirky Coffee Machine

Can we distinguish between these machines?

coin coin

tea coffee
bang bang

coffee tea

coin coin

tea coffee
bang bang

coffeetea
The deadlock

traces are the same!

IDEA 2:

Observations = Action Logs (= traces)

including deadlocks

AND RECOVERY BEHAVIOUR

Mind the
nondeterminism!

Mind the
nondeterminism!

December 1st, 2004 Software Testing: Trends & Visions 11

The Quirky Coffee Machine

coin coin

tea coffee
bang bang

coffee tea

coin coin

tea coffee
bang bang

coffeetea

≈

δ

coin

coffee

coffee

bang

tester

δ = deadlock
only enabled

if coffee is not

December 1st, 2004 Software Testing: Trends & Visions 12

Input/Output Systems

testing actions are usually directed, i.e.
there are inputs and outputs
systems can always accept all inputs
(input enabledness)
testers are I/O systems

output (stimulus) is input for the SUT
input (response) is output of the SUT

a

December 1st, 2004 Software Testing: Trends & Visions 13

Quiescence

With input enabledness a system S
deadlocks with a tester T if and only
if:

1. T produces no stimuli, and
2. S provides no responses
This is known as quiescence

We log quiescence and recovery in our
observation traces

December 1st, 2004 Software Testing: Trends & Visions 14

Input-Output QCM

coin? coin?

tea? coffee?bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !

states have
implicit input

loops for
input

enabledness

≈

coin!

coffee!

coffee?
δ

bang!

coffee !

coffee?

coffee!

quiescent
states

December 1st, 2004 Software Testing: Trends & Visions 15

To allow under-specification we restrict observations to
traces of the specification.

Implementation Relation
ioco

Intuition: I ioco-conforms to S, iff

if I produces output x after a given trace of S,
then S can produce x after that trace

if I cannot produce output after a given trace of S,
then it is possible that S cannot produce any output
after that trace (quiescence)

December 1st, 2004 Software Testing: Trends & Visions 16

test
execution

pass / fail

Formal Testing

test
generation

test suite TS

specification
S

implementation
i

correctness
criterion

implementation
relation
ioco

i passes Ts

i iocos

⇔ ?

December 1st, 2004 Software Testing: Trends & Visions 17

Test Cases

tree-structured
finite, deterministic
final states pass and fail
from each state ≠ pass, fail

either one input i?

or all outputs o! and δ

coffee!

coin?

coin ?

tea!

coffee!tea!

δ

coin?

δ

pass

failfail

failpass

Test cases are/have:test case t

!coin

!coin ; Start timer1

?tea fail

?timer1 fail

?coffee

!coin ; Start timer1

?tea pass

?timer2 pass

?coffee fail

TTCN !

December 1st, 2004 Software Testing: Trends & Visions 18

Test Generation Algorithm:

S := {s0}; // S contains reachable spec
// states; s0 initial state spec

while true do
::true -> exit(pass) // can always stop testing
::true -> select input a;

apply a;
S:=after(S,a) // reachable spec states after a

::true -> observe output b; // includes quiescence
if fails(S,b) // test if b is allowed
then exit(fail)
else S:=after(S,b) // reachable spec states after b

od

Every complete run of the algorithm executes a test

SOUND
i.e no correct implementation rejected

&
(limit) COMPLETE

i.e all incorrect implementations
rejected by repeated runs

December 1st, 2004 Software Testing: Trends & Visions 19

Overview
Model-based testing

model-driven test generation
implementation relations
input/output systems, quiescence

Test generation & execution
TorX
Demo
Case studies

Current and future developments
Testing real-time systems
Testing and tolerance
Test data generation

December 1st, 2004 Software Testing: Trends & Visions 20

Formal Testing with Transition
Systems

νt:
℘(traces)→
{fail,pass}

traces

der : LTS →
℘(TTS)

Ts ⊆ TTS

s ∈ LTS

ioco

iIUT ∈IOTS pass

fail

obs : TTS
× IOTS →
℘(traces)

December 1st, 2004 Software Testing: Trends & Visions 21

Test Generation Tools for ioco
TVEDA (CNET - France Telecom)

derives TTCN tests from single process SDL specification
developed from practical experiences
implementation relation R1 ≈ ioco

TGV (IRISA - Rennes)
derives tests in TTCN from LOTOS or SDL
uses test purposes to guide test derivation
implementation relation: unfair extension of ioco

TestComposer
Combination of TVEDA and TGV in ObjectGeode

TestGen (Stirling)
Test generation for hardware validation

TorX (Côte de Resyste)

December 1st, 2004 Software Testing: Trends & Visions 22

A Test Tool : TorX
On-the-fly test generation and test execution

Implementation relation: ioco

Specification languages: LOTOS, Promela, FSP, Automata, UML

TorX IUT
observe
output

offer
input

next
input

specification
check
output

pass
fail
inconclusive

user:
manual
automatic

December 1st, 2004 Software Testing: Trends & Visions 23

TorX Tool Architecture

explorer primer driver adapter IUTspec.

states
transitions

abstract
actions

abstract
actions

concrete
actions

specification
text

TorX IUTspecification

December 1st, 2004 Software Testing: Trends & Visions 24

TTCNTTCNTTCNTTCNTTCNTTCNTTCNtest
taal batch test executionbatch test generation

TTCNTTCNTTCNTTCNTTCNTTCNTTCNtest
taal

on the fly

On-the-Fly ↔ Batch Testing

explorer primer driver adapter IUTspec.

December 1st, 2004 Software Testing: Trends & Visions 25

explorer primer driver adapter IUTIUTIUT
bits

bytes

states

transitions

abstract

actionstransition

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x

On-the-Fly Testing
Concrete action
! 00001001

New menu
! x (x < 0)
! x (x >= 0)

Abstract action
! 9
Abstract action
? 3

Choice
! 9

Concrete action
? 00000011

Action
? 3
Choice
! -1

New menu
! x (x < 0)
! x (x >= 0)

Check
? 3

Abstract action
! -1

Concrete action
! 11111111
Concrete action
? (timeout)

Abstract action
? (quiescence)

Action
? (quiescence)

Check
? (quiescence)

New menu
! x (x < 0)
! x (x >= 0)

spec

December 1st, 2004 Software Testing: Trends & Visions 26

TorX : Test Purposes,
Selection, ……

driver adap

test
purpose
explorer

primer’

spec.
explorer primer

co
m
bi

na
to

r

stochastic
selector

TTCNTTCNtest
log

explorer primer

inverse

December 1st, 2004 Software Testing: Trends & Visions 27

TorX

December 1st, 2004 Software Testing: Trends & Visions 28

TorX Case Studies
Conference Protocol

EasyLink TV-VCR protocol

Cell Broadcast Centre component

Road Toll Payment Box protocol

V5.1 Access Network protocol

Easy Mail Melder

FTP Client

“Oosterschelde” storm surge barrier-control

TANGRAM: testing VLSI lithography machine

academic

Philips

CMG

Interpay

Lucent

CMG

academic

CMG

ASML

December 1st, 2004 Software Testing: Trends & Visions 29

The Conference Protocol
Experiment

Academic benchmarking experiment,
initiated for test tool evaluation and comparison

Based on really testing different implementations

Simple, yet realistic protocol (chatbox service)

Specifications in LOTOS, Promela, SDL, EFSM

28 different implementations in C

one of them (assumed-to-be) correct

others manually derived mutants

http://fmt.cs.utwente.nl/ConfCase

December 1st, 2004 Software Testing: Trends & Visions 30

CPE

UDP Layer

CPECPE

The Conference Protocol

join
leave
send

receive

Conference Service

December 1st, 2004 Software Testing: Trends & Visions 31

Conference Protocol
Test Architecture

CPE
= IUT

UT-PCO = C-SAP

LT-PCO

UDP Layer

U-SAP LT-PCO

Tester
TorX

B C

A

December 1st, 2004 Software Testing: Trends & Visions 32

The Conference Protocol
Experiments

TorX - LOTOS, Promela : on-the-fly ioco testing
Axel Belinfante et al.,
Formal Test Automation: A Simple Experiment
IWTCS 12, Budapest, 1999.

Tau Autolink - SDL : semi-automatic batch testing
TGV - LOTOS : automatic batch testing with test purposes

Lydie Du Bousquet et al.,
Formal Test Automation: The Conference Protocol with TGV/TorX
TestCom 2000, Ottawa.

PHACT/Conformance KIT - EFSM : automatic batch testing
Lex Heerink et al.,
Formal Test Automation: The Conference Protocol with PHACT
TestCom 2000, Ottawa.

December 1st, 2004 Software Testing: Trends & Visions 33

Conference Protocol Results

Results:

fail
pass
“core dump”

PHACT
EFSM

21
6
1

TorX
LOTOS

25
3
0

pass 000
444
666

000
444
666
289
293
398

TGV
LOTOS
random
25
3
0

TGV
LOTOS
purposes
24
4
0

TorX
Promela

25
3
0

000
444
666
332

000
444
666

000
444
666

December 1st, 2004 Software Testing: Trends & Visions 34

Conference Protocol Analysis

Mutants 444 and 666 react to PDU’s from non-
existent partners:

no explicit reaction is specified for such PDU’s,
so ioco-correct, and TorX does not test such behaviour

So, for LOTOS/Promela with TGV/TorX:
All ioco-erroneous implementations detected

EFSM:
two “additional-state” errors not detected

one implicit-transition error not detected

December 1st, 2004 Software Testing: Trends & Visions 35

Conference Protocol Analysis

TorX statistics
all errors found after 2 - 498 test events
maximum length of tests : > 500,000 test events

EFSM statistics
82 test cases with “partitioned tour method” (= UIO)
length per test case : < 16 test events

TGV with manual test purposes
~ 20 test cases of various length

TGV with random test purposes
~ 200 test cases of 200 test events

December 1st, 2004 Software Testing: Trends & Visions 36

Interpay
Highway Tolling System

December 1st, 2004 Software Testing: Trends & Visions 37

Highway Tolling Protocol

Characteristics :

Simple protocol

Parallellism : many cars at the same time

Encryption

System passed traditional testing phase

December 1st, 2004 Software Testing: Trends & Visions 38

Payment
Box

(PB)Road Side
Equipment

Onboard
Unit

UDP/IPWireless

Highway Tolling System

December 1st, 2004 Software Testing: Trends & Visions 39

Test Context

ObuSim
spec

PB
+

ObuSim
+

TCP/IP
+

UDP/IP

Payment
Box

TCP/IP

TorX

Highway Tolling:
Test Architecture

PCO

SUT

UDP/IP IAP

December 1st, 2004 Software Testing: Trends & Visions 40

Highway Tolling: Results

Test results :
1 error during validation (design error)

1 error during testing (coding error)

Automated testing :
beneficial: high volume and reliability

many and long tests executed (> 50,000 test events)

very flexible: adaptation and many configurations

Step ahead in formal testing of realistic systems

December 1st, 2004 Software Testing: Trends & Visions 41

Storm Surge Barrier Control

Oosterschelde Stormvloedkering (OSVK)

December 1st, 2004 Software Testing: Trends & Visions 42

SVKO Emergency Closing System

Collect water level sensor readings (12x, 10Hz)
Calculate mean outer-water level and mean
inner-water level
Determine closing conditions
if (closing_condition)
{notify officials
start diesel engines
block manual control
control local computers}

Failure rate: 10-4/closing event

December 1st, 2004 Software Testing: Trends & Visions 43

Testing SVKO

test controller (Unix port)
many timed observations

shortest timed delay: 2 seconds
longest timed delay: 85 minutes

water level sensor

water level sensor

12x collector controller

diesel generator

power control

barrier control
user control

signal wire communication

December 1st, 2004 Software Testing: Trends & Visions 44

Results

real-time control systems can be
tested with TorX-technology

addition of discrete real time
time stamped actions

quiescence action is not used
time spectrum of 3 orders of magnitude
deterministic system

adhoc implementation relation

December 1st, 2004 Software Testing: Trends & Visions 45

Overview
Model-based testing

model-driven test generation
implementation relations
input/output systems, quiescence

Test generation & execution
TorX
Demo
Case studies

Current and future developments
Testing real-time systems
Testing and tolerance
Test data generation

December 1st, 2004 Software Testing: Trends & Visions 46

Real-time Testing
and I/O Systems

can the notion of repetitive quiescence be
combined with real-time testing?
is there a well-defined and useful
conformance relation that allows sound and
(limit) complete test derivation?
can the TorX test tool be adapted to support
real-time conformance testing?

December 1st, 2004 Software Testing: Trends & Visions 47

Do We Still
Need Quiescence?

coin? coin?

tea? coffee?bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !

Yes!

the example
processes

should also
be distinct

in a real-time
context

coffee!

December 1st, 2004 Software Testing: Trends & Visions 48

Real-Time and Quiescence

quiescence of implementations is
observable in finite time

The testing framework can be extended
to real-time processes
if we make an additional assumption:

i.e. there exists an M>0 such that
for all reachable states s that can be reached
by letting time pass for M time units, s is quiescent

December 1st, 2004 Software Testing: Trends & Visions 49

Real-Time Test Cases

tree-structured
finite, deterministic
final states pass and fail

from each state ≠ pass, fail
choose input i? and a time k ;
apply i? at k, accepting all
outputs o! occurring earlier; or
or wait for time accepting all
outputs o! and δ

Real-time test cases are/have:

off!
x=5

x:=0

on?
x:=0

off!
x<5

off!

δ
x=M

failfail

failpass

x≤M

δ
x≤M

x≤k

x:= 0

off!

fail

December 1st, 2004 Software Testing: Trends & Visions 50

Real-Time Test Generation
the non-timed generation algorithm can be adapted to generate
sound real-time test cases
test generation is complete

for every erroneous trace it can generate a
test that exposes it

test generation is not limit complete
because of continuous time there are uncountably many timed error
traces and only countably many test are generated by repeated runs

test generation is almost limit complete
repeated test geration runs will eventually generate a test case that will
expose one of the non-spurious errors of a non-conforming
implementation

non-spurious
errors

=
errors with a

positive
probability of

occurring

December 1st, 2004 Software Testing: Trends & Visions 51

Current Work
Extension of the framework

M as a function of the specification state/output channel
integration with symbolic data generation
test action refinement
robustness & tolerance in real-time testing

Extending TorX environment using CORBA IDL
generate abstract TorX actions
generate TTCN-3 signatures
generate adapter code

Practical application
TANGRAM project: testing control software for VLSI lithography
machines (ASML)
smooth transition between timed & untimed testing

December 1st, 2004 Software Testing: Trends & Visions 52

Future Work

stochastic systems
quality of service
hybrid systems
coverage measures
integration white/black box spectrum
...

December 1st, 2004 Software Testing: Trends & Visions 53

For more information

fmt.cs.utwente.nl/research/testing

