Testing Times

On Model-Based

Functional Testing for
Real-Time Embedded Systems

Ed Brinksma
University of Twente, NL

University of Aalborg,DK
. &

i_i_ﬂ_iggrgiru af Twante
The Mlafhaorlsng
FAdAr I LI D AT PO

i

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twante

1 Overview

Model-based testing
model-driven test generation
implementation relations
input/output systems, quiescence

Test generation & execution
TorX
Demo
Case studies

Current and future developments
Testing real-time systems
Testing and tolerance
Test data generation

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Overview

® Model-based testing
¥ model-driven test generation
¥ implementation relations
® input/output systems, quiescence
® Test generation & execution
B TorX
H Demo
B Case studies
® Current and future developments
B Testing real-time systems
B Testing and tolerance
B Test data generation

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Test Automatian

Traditional test automatic
= tools to exegufe anc

(%
specification P%

- implementatio
- under test

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Our Context

Formal methods:
¥ unambiguous spe
W precise noti
® formal validat
¥ algorithmi

Dynamic behavi
W concentrate on ¢ behaviour
W concurrency and hon-determinism

driven”)

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

il Conformance Testing
Level of detail
r'obus’rnss black box
performance
usability
reliabili
functional
behaviour

Characteristics

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Formal Testing

/imps
A exhaustive ﬂﬁ,u soun.
m test]
Coclz;ig;;;ens‘s generation /passes T
mplementation
relation -
imp -
\ 4 test suite 75
implementation ‘
/
test
execution

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente |

Implementation Relation

Y

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Y

December 1st, 2004 Software Testing: Trends & Visions University of Twante

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Input/Output Systems

testing actions are usually directed, i.e.
there are inputs and outputs

systems can always accept all inputs
(input enabledness)
testers are I/0 systems
output (stimulus) is input for the SUT
input (response) is output of the SUT

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente

QQuiescence

With input enabledness a system S
deadlocks with a tester T if and only

iIf:
T produces no stimuli, and
S provides no responses
This is known as quiescence

We log quiescence and recovery in our

observation traces
&)

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Input-Output QC

Y

December 1st, 2004 Software Testing: Trends & Visions University of Twente 1

Implementation Relation
10CO

- a4
—
. i
. i
- N

To allow under-specification we restrict observations to
traces of the specification.

Intuition: I ioco-conforms to S, iff

if T produces output x after a given trace of S5,
then S can produce x after that trace

if T cannot produce output after a given trace of S5,
then it is possible that S cannot produce any output
after that trace (guiescence)

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente

|

|
=
e

Formal Testing

/iocos
Y $?
correctness . / passes T,
criterion n S
mplementation =
relation -
loco .
\/

December 1st, 2004 Software Testing: Trends & Visions University of Twente 1

|

;1I1|

Test Cases

e
——

—
™

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twante

or ates after b

the algorithm executes a test

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twante

Overview

® Model-based testing
B model-driven test generation
B implementation relations
B input/output systems, quiescence
® Test generation & execution
® TorX
= Demo
W Case studies
® Current and future developments
B Testing real-time systems
B Testing and tolerance
B Test data generation

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Formal Testing with Transition
Systems

#()
{fail pass}

December 1st, 2004

‘
1

i1 Test Generation Tools for 10CO

TVEDA (CNET - France Telecom)
derives TTCN tests from single process SDL specification
developed from practical experiences
implementation relation Rl ~ ioco

TGV (IRISA - Rennes)
derives tests in TTCN from LOTOS or SDL
uses test purposes to guide test derivation
implementation relation: unfair extension of ioco

TestComposer
Combination of TVEDA and TGV in ObjectGeode

TestGen (Stirling)
Test generation for hardware validation

TorX (Cote de Resyste) P
Y

December 1st, 2004 Software Testing: Trends & Visions University of Twente

A Test Tool: TorX

On-the-fly test generation and test execution

Implementation relation: ioco

Specification languages: LOTOS, Promela, FSP, Automata, UML

user:
manual
automatic

pex: offer
inpu :
P ol input
specification TorX
check observe
SRR output
pass
fail
inconclusive

&,

University of Twente 2

December 1st, 2004 Software Testing: Trends & Visions

= I
I

-y

TorX Tool Architecture

specification states abstract abstract concrete
text transitions actions actions actions

a2

v

December 1st, 2004 Software Testing: Trends & Visions University of Twente 2

On-the-Fly <> Batch Testing

on the fly

explorer <=» primer <> driver <> adapter «—> TUT

atch test generation ‘ batch test execution
™
v

December 1st, 2004 Software Testing: Trends & Visions University of Twente 2;

= I
I

-y

On-’rhe-FIy TesTing

specification implementatio

? X (x<(

?x(x>=0)

? X

&,

December 1st, 2004 Software Testing: Trends & Visions Ve i 2!

lorX : lest Purposes,
Selection,

December 1st, 2004 Software Testing: Trends & Visions University of Twente 2

Config: conf_jan.prom

% Message Sequence Chart: conf.jan.prom M= E

Re)start Kill ||| Maode: # Alto, AutoTrace, Depth: [dut] | | |:uﬂ1::|2 [ndp0] T
p
{quiescense)

Path
from_lpwer ! PO Jory ! 403 ! 61 1|2 1 1

14 output(): (Guiescense)
15 inputfudpz): from_lower | PDU_JOIN 1103 152 1211

16 outputfudp2): to_lower | POU_ANSWER [1021521112 {Gulescense)
17 output]: (Quiescense) rom_lower | How LEAVE ! 103 ! 521 01 1

From upper ! JpIn ! 102 I 52

Current state offers: from_lpwer | POV DAYA | 211 32 121 1

[nputs: out
to_luo ! T 102 1 2 ! 12
from_upper | LEAVE | var_byte | var_byte Delta —oper - POV _JOIH "1
from_upper | DREGH | war_byte | var_byte to lower | pL'" JOIK ! 1020 521 11 0
frof_lover | PDU_JOIM | var_byte | var_hyte | var_byte N
from_lower | PDU_DATA | var_byte | var_byte | var_byt from lower ! POV DATA ! 21! 34! 0! 1

from_loveer | PDU_LEAVE | var_hyte | var_hyte | var_hy

tn_lo‘u‘er!P]l‘ll.‘.l‘ﬂIH]!iﬂZ!EZ!#!Z

tu].uwer!PL1!JﬂIH!:l.ﬂ2!52!1!ﬂ"

Randam Input Randam
(ml.i.escense}'
from upper ! DREQ ! 21 1 31

Yeardict: .

(mu.escense}'
IUT Stderr: Debug: of_rt.c: Joining sender is not a parner! from_lgwer ! POU Jory ! 403 ! 52 1|21 1
IUT Stderr: Debug: of_rt.c: Create a st answer unit!
IUT Stderr: Debug: cf_rt.c: Send the st answer unit! to_lowpr | POU_ANSWER ! 102 1| 52 L‘i 12

IUT Stderr: Debug: cf_st.c: Entering the *Hst™ answer casel
IUT Stderr: Debug: of_st.c: answer: Add st user to parner! (Quiescense)
IUT Stderr: Debug: cf_st.c: answer: [nsert partner! 41
IUT Stderr: Debug: of_st.c: Construct answer pdul

IUT Stderr: Debug: of_st.c: Send answer- pdul

IUT Stderr: Debug: mc_st.c: Sending AMNSWER-pdu (21 bytes) to user 3

ClearLog | Save Log o File... Save in: msc-1.ps Close

December 1st, 2004 Software Testing:

TorX Case Studies

Conference Protocol

EasyLink TV-VCR protocol

Cell Broadcast Centre component

Road Toll Payment Box protocol

V5.1 Access Network protocol

Easy Mail Melder

FTP Client

"Oosterschelde” storm surge barrier-control

TANGRAM: testing VLSI lithography machine
&

December 1st, 2004 Software Testing: Trends & Visions University of Twente

The Conference Protocol
Experiment

Academic benchmarking experiment,
initiated for test tool evaluation and comparison

Based on really testing different implementations
Simple, yet realistic protocol (chatbox service)
Specifications in LOTOS, Promela, SDL, EFSM
28 different implementations in C

one of them (assumed-to-be) correct

others manually derived mutants

http://fmt.cs.utwente.nl/ConfCase

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente

The Conference Protocol

éa LA La

join

leave

send
receive

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

3

conterence rFrotocol
Test Architecture

December 1st, 2004 Software Testing: Trends & Visions University of Twente

=" The Conterence Protocol
Experiments

TorX - LOTOS, Promela: on-the-fly ioco testing

Axel Belinfante et al.,
Formal Test Automation: A Simple Experiment
IWTCS 12, Budapest, 1999.

Tau Autolink - SDL : semi-automatic batch testing

TGV - LOTOS : automatic batch testing with test purposes

Lydie Du Bousquet et al.,
Formal Test Automation: The Conference Protocol with TGV/TorX
TestCom 2000, Ottawa.

PHACT/Conformance KIT - EFSM : automatic batch testing

Lex Heerink et al.,
Formal Test Automation: The Conference Protocol with PHACT
TestCom 2000, Ottawa.
r‘
Y

December 1st, 2004 Software Testing: Trends & Visions University of Twente

“Conference Protocol Results

Results:

fail
pass
“core dump”

pass

December 1st, 2004

TorX TorX PHACT TGV TGV
LOTOS Promela EFSM LOTOS LOTOS
random purposes
25 25 21 25 24
3 3 6 3 4
0 0 | 0 0
0[0]0) 0[0]0) 0[0]0) 000 0]0]0)
444 444 444 444 444
666 666 666 666 666
289 33¢
293
398
-
&

Software Testing: Trends & Visions

University of Twente

il Conference Protocol Analysis

Mutants 444 and 666 react to PDU's from non-
existent partners:

no explicit reaction is specified for such PDU's,
so ioco-correct, and TorX does not test such behaviour

So, for LOTOS/Promela with TGV/TorX:
All ioco-erroneous implementations detected

EFSM:

two “"additional-state" errors not detected

one implicit-transition error not detected

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente

- |
‘ll

il Conference Protocol Analysis

TorX statistics

all errors found after 2 - 498 test events
maximum length of tests: > 500,000 test events

EFSM statistics
82 test cases with "partitioned tour method” (= UIO)
length per test case : < 16 test events

TGV with manual test purposes

~ 20 test cases of various length

TGV with random test purposes
~ 200 ftest cases of 200 test events
-
&

December 1st, 2004 Software Testing: Trends & Visions University of Twente

3

Interpay
Highway Tolling System

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Highway Tolling Protocol

>

._ Characteristics :

Simple protocol

Parallellism : many cars at the same time
Encryption
System passed traditional testing phase

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Highway Tolling System

December 1st, 2004

Payment
Box

(PB)

Wireless

Software Testing: Trends & Visions

UDP/IP

-
%

University of Twente

K}

Highway Tolling:
Test Architecture

__

Sl TorX | Test Context Payment |
| ObuSim Box
PB :
o @ TCP/IP UDP/IP @
ObuSim 4 “EEEEE
+ : CHENEE_
TCP/IP
+
UDP/IP
e Sut
-
&

December 1st, 2004 Software Testing: Trends & Visions University of Twente

‘' Highway Tolling: Results

Test results :
1 error during validation (design error)

1 error during testing (coding error)

Automated testing :
beneficial: high volume and reliability
many and long tests executed (> 50,000 test events)

very flexible: adaptation and many configurations

Step ahead in formal testing of realistic systems

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente 4

'Storm Surge Barrier Control

Ly .J:L.u,. i Ihﬂlﬂﬂiﬂ%ﬁ*&ﬁfﬂyhfﬁ" . e

'——\.--.-

Oosterschelde Stormvloedkering (OSVK)

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

il SVKO Emergency Closing System

Collect water level sensor readings (12x, 10Hz)

Calculate mean outer-water level and mean
inner-water level

Determine closing conditions
1f (closing condition)
{noti1fy officials
start diesel engines
block manual control

control local computers}

Failure rate: 10-4/closing event

-
%

University of Twente

December 1st, 2004 Software Testing: Trends & Visions

Testing SVKO

H12x

signal wire communication

® test controller (Unix port)

® many timed observations
¥ shortest timed delay: 2 seconds

¥ |longest timed delay: 85 minutes
&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente 4

Results

real-time control systems can be
tested with TorX-technology

addition of discrete real time
time stamped actions
quiescence action is not used
time spectrum of 3 orders of magnitude
deterministic system

adhoc implementation relation

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Overview

® Model-based testing
B model-driven test generation
B implementation relations
B input/output systems, quiescence
® Test generation & execution
B TorX
H Demo
B Case studies
® Current and future developments
W Testing real-time systems
W Testing and tolerance
¥ Test data generation

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Real-time Testing
and I/O Systems

can the notion of repetitive quiescence be
combined with real-time testing?

IS there a well-defined and useful
conformance relation that allows sound and
(limit) complete test derivation?

can the TorX test tool be adapted to support
real-time conformance testing?

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente 4

Do We Still
Need Quiescence?

|
am
=

December 1st, 2004 Software Testing: Trends & Visions University of Twente 4

Real-Time and Quiescence

The testing framework can be extended
to real-time processes
if we make an additional assumption:

i.e. There exists an M>0 such that

for all reachable states s that can be reached

by letting time pass for M time units, s is quiescent
&

December 1st, 2004 Software Testing: Trends & Visions University of Twente 4

Real-Time Test Cases

Real-time test cases are/have:

M tree-structured
® finite, deterministic
® final states pass and fail

B from each state # pass, fail
® choose input i? and a time k ;
apply i? at k, accepting all
outputs ol occurring earlier; or

® or wait for time accepting all

outputs ol and 0

&,

December 1st, 2004 Software Testing: Trends & Visions University of Twente 4

' Real-Time Test Generation

® the non-timed generation algorithm can be ada
sound real-time test cases

® test generation is complete

for every erroneous trace it can generate a
test that exposes it

® test generation is not limit complete

because of continuous time there are uncoun
traces and only countably many test are ge

® test generation is almost limit comple

repeated test geration runs will eventually generate a test case that will
expose one of the non-spurious errors of a non-conforming
implementation -
-
Y

December 1st, 2004 Software Testing: Trends & Visions University of Twente 5

Current Work

Extension of the framework
M as a function of the specification state/output channel
integration with symbolic data generation
test action refinement
robustness & tolerance in real-time testing

Extending TorX environment using CORBA IDL
generate abstract TorX actions
generate TTCN-3 signatures
generate adapter code

Practical application

TANGRAM project: testing control software for VLST lithography
machines (ASML)

smooth transition between timed & untimed testing
o
v

December 1st, 2004 Software Testing: Trends & Visions University of Twente

Future Work

stochastic systems

quality of service

hybrid systems

coverage measures

integration white/black box spectrum

-
%

University of Twente

December 1st, 2004 Software Testing: Trends & Visions

For more information

fmt.cs.utwente.nl/research/testing

-
%

December 1st, 2004 Software Testing: Trends & Visions University of Twente

