Testing Times

On Model-Based Functional Testing for Real-Time Embedded Systems

Ed Brinksma
University of Twente, NL
University of Aalborg, DK

Theme

How can theory help to improve the quality and productivity of testing conformance of real-life embedded software systems?

Overview

- Model-based testing
 - model-driven test generation
 - implementation relations
 - input/output systems, quiescence
- Test generation & execution
 - TorX
 - Demo
 - Case studies
- Current and future developments
 - Testing real-time systems
 - Testing and tolerance
 - Test data generation

Overview

- Model-based testing
 - model-driven test generation
 - implementation relations
 - input/output systems, quiescence
- Test generation & execution
 - TorX
 - Demo
 - Case studies
- Current and future developments
 - Testing real-time systems
 - Testing and tolerance
 - Test data generation

Test Automation

Our Context

Models are hard to

make, but easier

to maintain

Formal methods:

- unambiguous specificat
- precise notion
- formal validation
- algorithmic
- Dynamic behavior
 - concentrate on c row behaviour
 - concurrency and non-determinism

driven")

Conformance Testing

Characteristics

Formal Testing

Implementation Relation

IDEA:

Observations = Action Logs (= traces)

including deadlocks

Machine

Mind the nondeterminism!

-ULA -

Observations = Action Logs (= traces)

including deadlocks

AND RECOVERY BEHAVIOUR

The Quirky Coffee Machine

δ = deadlock only enabled if coffee is not

Input/Output Systems

- testing actions are usually directed, i.e.
 there are inputs and outputs
- systems can always accept all inputs (input enabledness)
- testers are I/O systems
 - output (stimulus) is input for the SUT
 - input (response) is output of the SUT

Quiescence

- With input enabledness a system 5
 deadlocks with a tester T if and only
 if:
 - 1. T produces no stimuli, and
 - 2. 5 provides no responses
 This is known as quiescence
- We log quiescence and recovery in our observation traces

Input-Output QCM

states have implicit input loops for input enabledness

Implementation Relation ioco

To allow under-specification we restrict observations to traces of the specification.

Intuition: I ioco-conforms to 5, iff

- if I produces output x after a given trace of 5, then 5 can produce x after that trace
- if I cannot produce output after a given trace of 5, then it is possible that 5 cannot produce any output after that trace (quiescence)

Formal Testing

Test Gener tion

rithm:

 $S := \{s0\};$

SOUND

i.e no correct implementation rejected

රු

(limit) COMPLETE

i.e all incorrect implementations rejected by repeated runs

cer a

ates after b

Every o

e run the algorithm executes a test

Overview

- Model-based testing
 - model-driven test generation
 - implementation relations
 - input/output systems, quiescence
- Test generation & execution
 - TorX
 - Demo
 - Case studies
- Current and future developments
 - Testing real-time systems
 - Testing and tolerance
 - Test data generation

m

Test Generation Tools for ioco

- TVEDA (CNET France Telecom)
 - derives TTCN tests from single process SDL specification
 - developed from practical experiences
 - implementation relation $R1 \approx ioco$
- TGV (IRISA Rennes)
 - derives tests in TTCN from LOTOS or SDL
 - uses test purposes to guide test derivation
 - implementation relation: unfair extension of ioco
- TestComposer
 - Combination of TVEDA and TGV in ObjectGeode
- TestGen (Stirling)
 - Test generation for hardware validation
- TorX (Côte de Resyste)

A Test Tool: TorX

- On-the-fly test generation and test execution
- Implementation relation: ioco
- Specification languages: LOTOS, Promela, FSP, Automata, UML

TorX Tool Architecture

On-the-Fly \leftrightarrow Batch Testing

atch test generation

taal

batch test execution

On-the-Fly Testing

specification

implementation

TorX: Test Purposes, Selection,

TorX Case Studies

- Conference Protocol
- EasyLink TV-VCR protocol
- Cell Broadcast Centre component
- Road Toll Payment Box protocol
- V5.1 Access Network protocol
- Easy Mail Melder
- FTP Client
- "Oosterschelde" storm surge barrier-control
- TANGRAM: testing VLSI lithography machine

academic

Philips

CME

Interpay

Lucent

CME

academic

CME

ASML

The Conference Protocol Experiment

- Academic benchmarking experiment, initiated for test tool evaluation and comparison
- Based on really testing different implementations
- Simple, yet realistic protocol (chatbox service)
- Specifications in LOTOS, Promela, SDL, EFSM
- 28 different implementations in C
 - one of them (assumed-to-be) correct
 - others manually derived mutants
- http://fmt.cs.utwente.nl/ConfCase

The Conference Protocol

join leave send receive

Conference Protocol Test Architecture

The Conference Protocol Experiments

- TorX LOTOS, Promela: on-the-fly ioco testing
 Axel Belinfante et al.,
 Formal Test Automation: A Simple Experiment
 - Formal Test Automation: A Simple Experiment IWTCS 12, Budapest, 1999.
- Tau Autolink SDL: semi-automatic batch testing
- TGV LOTOS: automatic batch testing with test purposes

Lydie Du Bousquet et al., Formal Test Automation: The Conference Protocol with TGV/TorX TestCom 2000, Ottawa.

• PHACT/Conformance KIT - EFSM: automatic batch testing

Lex Heerink et al.,

Formal Test Automation: The Conference Protocol with PHACT TestCom 2000, Ottawa.

Conference Protocol Results

Results:	TorX	TorX	PHACT	TGV	TGV
	<u>LOTOS</u>	<u>Promela</u>	<u>EFSM</u>	<u>LOTOS</u>	<u>LOTOS</u>
				<u>random</u>	purposes
fail	25	25	21	25	24
pass	3	3	6	3	4
"core dump"	0	0	1	0	0
pass	000	000	000	000	000
	444	444	444	444	444
	666	666	666	666	666
			289		332
			293		
			398		

Conference Protocol Analysis

- Mutants 444 and 666 react to PDU's from nonexistent partners:
 - no explicit reaction is specified for such PDU's, so ioco-correct, and TorX does not test such behaviour
- So, for LOTOS/Promela with TGV/TorX:
 All ioco-erroneous implementations detected
- EFSM:
 - two "additional-state" errors not detected
 - one implicit-transition error not detected

im

Conference Protocol Analysis

- TorX statistics
 - all errors found after 2 498 test events
 - maximum length of tests: > 500,000 test events
- EFSM statistics
 - 82 test cases with "partitioned tour method" (= UIO)
 - length per test case: < 16 test events</p>
- TGV with manual test purposes
 - ~ 20 test cases of various length
- TGV with random test purposes
 - ~ 200 test cases of 200 test events

Interpay Highway Tolling System

Highway Tolling Protocol

Characteristics:

- Simple protocol
- Parallellism: many cars at the same time
- Encryption
- System passed traditional testing phase

Highway Tolling System

Highway Tolling: Test Architecture

Highway Tolling: Results

- Test results:
 - 1 error during validation (design error)
 - 1 error during testing (coding error)
- Automated testing :
 - beneficial: high volume and reliability
 - many and long tests executed (> 50,000 test events)
 - very flexible: adaptation and many configurations
- Step ahead in formal testing of realistic systems

Storm Surge Barrier Control

Oosterschelde Stormvloedkering (OSVK)

SVKO Emergency Closing System

- Collect water level sensor readings (12x, 10Hz)
- Calculate mean outer-water level and mean inner-water level
- Determine closing conditions

```
if (closing_condition)
{notify officials
  start diesel engines
  block manual control
  control local computers}
```

• Failure rate: 10⁻⁴/closing event

Testing SVKO

- test controller (Unix port)
- many timed observations
 - shortest timed delay: 2 seconds
 - longest timed delay: 85 minutes

Results

- real-time control systems can be tested with TorX-technology
 - addition of discrete real time
 - time stamped actions
- quiescence action is not used
 - time spectrum of 3 orders of magnitude
 - deterministic system
- adhoc implementation relation

Overview

- Model-based testing
 - model-driven test generation
 - implementation relations
 - input/output systems, quiescence
- Test generation & execution
 - TorX
 - Demo
 - Case studies
- Current and future developments
 - Testing real-time systems
 - Testing and tolerance
 - Test data generation

Real-time Testing and I/O Systems

- can the notion of repetitive quiescence be combined with real-time testing?
- is there a well-defined and useful conformance relation that allows sound and (limit) complete test derivation?
- can the TorX test tool be adapted to support real-time conformance testing?

Do We Still Need Quiescence?

Yes!

the example processes should also be distinct in a real-time context

Real-Time and Quiescence

The testing framework can be extended to real-time processes if we make an additional assumption:

quiescence of implementations is observable in finite time

i.e. there exists an M>O such that for all reachable states s that can be reached by letting time pass for M time units, s is quiescent

Real-Time Test Cases

Real-time test cases are/have:

- tree-structured
- finite, deterministic
- final states pass and fail
- from each state \neq pass, fail
 - choose input i? and a time k;
 apply i? at k, accepting all
 outputs o! occurring earlier; or
 - or wait for time accepting all outputs o! and δ

Fin

Real-Time Test Generation

- the non-timed generation algorithm can be adapted sound real-time test cases
- test generation is complete
 for every erroneous trace it can generate a
 test that exposes it
- test generation is not limit complete
 because of continuous time there are uncount
 traces and only countably many test are gereated by repeated runs
- test generation is almost limit complet
 repeated test geration runs will eventually generate a test case that will expose one of the non-spurious errors of a non-conforming implementation

non-spurious errors

errors with a positive probability of occurring

9

Current Work

- Extension of the framework
 - M as a function of the specification state/output channel
 - integration with symbolic data generation
 - test action refinement
 - robustness & tolerance in real-time testing
- Extending TorX environment using CORBA IDL
 - generate abstract TorX actions
 - generate TTCN-3 signatures
 - generate adapter code
- Practical application
 - TANGRAM project: testing control software for VLSI lithography machines (ASML)
 - smooth transition between timed & untimed testing

Future Work

- stochastic systems
- quality of service
- hybrid systems
- coverage measures
- integration white/black box spectrum
- ...

For more information

fmt.cs.utwente.nl/research/testing

